
Learning Bayesian networks given a data set
consisting of samples that are not independent

and identically distributed
ABNMS 2011

Jessica Kasza, Gary Glonek, Patty Solomon

November 23 2011

Kasza, Glonek, Solomon Learning BNs with non-iid data



The Problem

• Consider a random vector X = (X1, . . . ,Xp)T ∼ Np (0,Σ)

• Learning the structure of the Bayesian network of X
usually requires n iid samples

• What if we have a more complex data set?
• non-independent samples;
• additional components of variance;
• data on exogenous variables thought to affect X .
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Learning Graphical Structure

• A Bayesian network B = (G,Θ) for a random vector X
consists of two components:

• a directed acyclic graph G = (V ,E), V = {1,2, . . . ,p},
• conditional densities for each random variable, f (xi |xPi , θi ),

where Pi is the set of parents of i in G, θi the parameters.

The graph and conditional densities specify a joint density
function for X :

f (x |Θ) =

p∏
i=1

f
(
xi |xPi , θi

)
.

• Want to learn G given a data set d = {x1,x2, . . . ,xp},
x i = (xi1, . . . , xin)

• A popular approach for learning about genetic regulatory
networks.
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Score-based Approach

• How well G describes the data is quantified by a score
metric, S(G|d).

• Score we consider is:

S(G|d) = p(G)p(d |G) = p(G)

∫
p(d |G,Θ)p(Θ|G)dΘ.

The BGe score of Geiger and Heckerman (1994).
• Need to specify:

• p(G): prior on space of DAGs;
• p(d |G,Θ) =

∏p
i=1 f (x i |xPi , θi );

• p(Θ|G): prior for the parameters.
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IID samples

When d consists of iid samples:

x i |xPi , γi , ψi ∼ Nn(xPiγi , ψi In).

Parameter priors:

γi |ψi ∼ N|Pi |

(
0, ψi

τ I
)
,

ψ−1
i ∼ Ga

(
δ+|Pi |

2 , τ2

)
.

These priors chosen to give an equivalent score, Geiger and
Heckerman (2002).

S(G|d) = p(G)

p∏
i=1

f (x i |xPi ),

f (x i |xPi ) =

∫
R|Pi |×(0,∞)

f (x i |xPi , γi , ψi)f (γi , ψi)dγidψi .
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Algorithms for exploring DAG space

S(G|d) used in conjunction with algorithms for exploring the
DAG space.
• Greedy hill climbing,
• High-dimensional Bayesian covariance selection, Dobra et

al. (2004)
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What if samples are not IID?

Grape gene example:
• Learn about the relationships of grape heat shock genes
• Grapes sampled from 3 geographically distinct vineyards
• Temperatures at times leading up to picking of grapes

available.

Must account for effects of exogenous variables!

• Now have

x i |xPi , γi ,bi , ψi ∼ Nn(xPiγi + Qbi , ψi In)

where
Q =

(
q1| · · · |qm

)
.
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Dealing with bi : x i |xPi , γi ,bi , ψi ∼ Nn(xPiγi + Qbi , ψi In)

• Ignore bi !

Not a good idea.
• Bayesian approach: place a prior on bi :

bi |φi ∼ Nm(0, φi I)

In addition to previously used priors for γi and ψi .
Best prior choice is

bi |ψi ∼ Nm(0, υ−1ψi I)

SB(G|d) = p(G)

p∏
i=1

fυ(x i |xPi ).
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Dealing with bi : x i |xPi , γi ,bi , ψi ∼ Nn(xPiγi + Qbi , ψi In)

• Residual approach: remove random effects by analysing
residuals: n × (n −m) matrix P:

PT Q = 0, PT P = In−m, PPT = In −Q(QT Q)−1QT .

Then

PT x i |PT xPi , γi , ψi ∼ Nn−m

(
PT xPiγi , ψi I

)
.

Using previous priors for γi and ψi , get score metric

SR(G|d) = p(G)

p∏
i=1

fR(PT x i |PT xPi ).
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Grape Gene Example

• n = 50 samples of p = 26 grape berry genes;
• Grape berries sampled from 3 vineyards
• Genes are heat shock genes - and we have temperature

measurements.
• Assume the following model for each gene:

Xij =
∑
l∈Pi

γilXlj +
m∑

r=1

qrjbir + εij , εij ∼ N(0, ψi),

γil ∼ N(0, τ−1ψi),

ψi ∼ Inverse Gamma
(
δ + |Pi |

2
,
τ

2

)
.

Use the residual approach to account for bi . (Is this a good
idea?)
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Ignoring effects of vineyard and temperature
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Residual approach, vineyard effects
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Residual approach, vineyard and temperature effects
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Grape Gene Graphs

• As more variation due to exogenous sources is accounted
for, graphs become sparser

• Genes 14, 18, 23: disconnected from rest of graph in last
two graphs

• Expressions of these genes have very low ses - no
variation to be explained by relationships with other genes!

• Genes 9, 10, 11: correspond to HSP 81, early response to
dehydration

• Role not very well understood, our analysis indicates they
are not implicated in heat shock gene network.
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Comparing Bayesian and residual approaches

• Should we have used the Bayesian approach in the grape
gene example?

• Residual approach is easier to use;
• May obtain less information about γ i , ψi :

• May be important for posterior estimation of parameters.

• Full Bayesian approach posterior: fB(γ i , ψi |x i ,xPi ).
Residual approach posterior: fR(γ i , ψi |x i ,xPi ).

• We consider the Kullback Leibler divergence:

D {fB, fR} =

∫
R|Pi |

∫ ∞
0

fB log
(

fB
fR

)
dψidγ i .
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Divergence for marginal covariance matrix Σ

var(X |{γ i , ψi}i=1,...,p) = Σ

• If the true graphical structure of X is known:

DΣ {fB(Σ|X ), fR(Σ|X )}

=

p∑
i=1

D
{

fB(γ i , ψi |x i ,xPi ), fR(γ i , ψi |x i ,xPi )
}
.

• Divergence for the empty graph:

De
Σ =

p∑
i=1

D {fB(γ i , ψi |x i), fR(γ i , ψi |x i)} ,

• Divergence for an arbitrary full graph:

Df
Σ =

p∑
i=1

D {fB(γ i , ψi |x i ,x1, . . . ,x i−1), fR(γ i , ψi |x i ,x1, . . . ,x i−1)} .
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Divergence in Grape Gene Example
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Figure: Solid lines: empty graphs. Dashed lines: complete graphs.Kasza, Glonek, Solomon Learning BNs with non-iid data



Conclusions and Further Work

• The Bayesian and residual score metrics extend the utility
of score-based methods for learning networks to situations
where the data does not consist of iid samples.

• Provided sample size is not too small, residual approach is
a useful alternative to Bayesian approach

• Even when the assumptions of the Bayesian approach are
valid.

Some questions:
• What happens when the chosen prior distribution of the

effects of exogenous variables is not suitable?
• Are there situations where the residual approach performs

better than the Bayesian approach?
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